

Torlon® 7130

polyamide-imide

Torlon® 7130 is an 30% carbon-fiber reinforced grade of polyamide-imide (PAI) resin. It offers high strength and modulus, exceptional creep resistance, and good fatigue resistance. It has thermal expansion characteristics similar to steel, and therefore excellent dimensional stability.

Torlon® PAI has the highest strength and stiffness of any thermoplastic up to 275°C (525°F). It has

outstanding resistance to wear, creep, and chemicals.

The potential applications for this resin include metal replacement, sliding vanes, aerospace parts, impellors, shrouds, pistons, and housings.

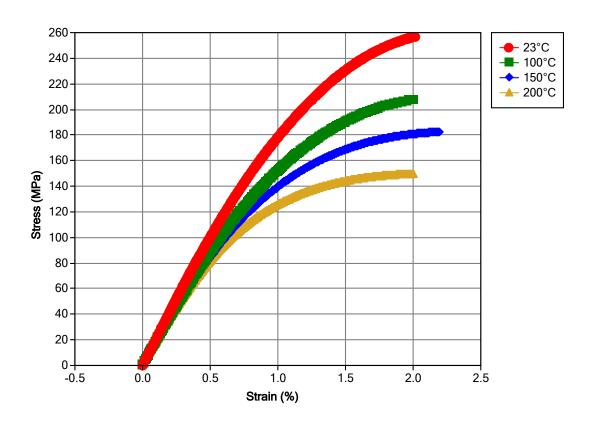
It is available in injection molding and extrusion (E) grades.

General

Material Status	 Commercial: Active 		
Availability	 Africa & Middle East Asia Pacific Europe	Latin America North America	
Filler / Reinforcement	 Carbon Fiber, 30% Filler by Weight 		
Features	Chemical ResistantCreep ResistantFatigue ResistantFlame RetardantGood Compressive Strength	Good Dimensional StabilityHigh Heat ResistanceHigh StiffnessHigh Temperature StrengthSemi Conductive	
Uses	 Aerospace Applications Aircraft Applications Business Equipment Connectors Electrical/Electronic Applications Film Gears 	 Housings Industrial Applications Industrial Parts Machine/Mechanical Parts Metal Replacement Oil/Gas Applications Semiconductor Applications 	
RoHS Compliance	• RoHS Compliant		
Forms	 Pellets 		
Processing Method	Injection MoldingMachining	• Profile Extrusion	
Physical	Typical V	alue Unit	Test method
Density / Specific Gravity		1.48	
Molding Shrinkage - Flow	0.0 to	0.0 to 0.15 %	
Water Absorption (24 hr)		0.26 % AST	
Mechanical	Typical Value Unit		Test method
Tensile Modulus	•	2500 145	AOTH A D 222
		16500 MPa	
	2.	2300 MPa	ASTM D1708

polyamide-imide

Mechanical	Typical Value	Unit	Test method
Tensile Strength	221	MPa	ASTM D638
Tensile Stress	203	MPa	ASTM D1708
Tensile Elongation			
Break	1.5	%	ASTM D638
Break ¹	6.0	%	ASTM D1708
Flexural Modulus			ASTM D790
23°C	19900	MPa	
232°C	15700	MPa	
Flexural Strength			ASTM D790
23°C	350	MPa	
232°C	174	МРа	
Compressive Modulus	9860	MPa	ASTM D695
Compressive Strength	254	МРа	ASTM D695
Impact	Typical Value		Test method
Notched Izod Impact		J/m	ASTM D256
Unnotched Izod Impact	320	J/m	ASTM D4812
Thermal	Typical Value	Unit	Test method
Deflection Temperature Under Load			ASTM D648
1.8 MPa, Unannealed	282	°C	
Thermal Conductivity	0.52	W/m/K	ASTM C177
Coefficient of Linear Thermal Expansion	9.0E-6	cm/cm/°C	ASTM D696
Injection	Typical Value	Unit	
Drying Temperature	177		
Drying Time	3.0	hr	
Suggested Max Moisture	0.050		
Rear Temperature	304	°C	
Nozzle Temperature	371	°C	
Mold Temperature	199 to 216	°C	
Back Pressure	6.89	MPa	
Screw Speed	50 to 100	rpm	
Screw L/D Ratio	18.0:1.0 to 24.0:1.0	•	
·			


Injection Notes

Minimum drying conditions: 3 hours at 350°F (177°C), 4 hours at 300°F (149°C), or 16 hours at 250°F (121°C). Compression Ratio: 1:1 to 1.5:1

Begin hold pressure at a high setting 6,000-8,000 psi (41.37-55.16 MPa), for several seconds, then drop off to 3,000-5,000 psi (20.69-34.48 MPa), for the duration of the hold pressure sequence.

Molded parts must be post cured.

Isothermal Stress vs. Strain (ISO 11403)

Torlon° 7130 polyamide-imide

Notes

Typical properties: these are not to be construed as specifications.

¹ ASTM Test Method D1708 has been used to measure the tensile properties of PAI and similar materials because the small test specimen conserved material.

Today the most widely used specimen is the Type 1 bar of ASTM D638. These D1708 values are included for historical purposes and they should not be compared to the D638 values.

www.syensqo.com

Safety Data Sheets (SDS) are available by emailing us or contacting your sales representative. Always consult the appropriate SDS before using any of our products.

Neither Syensqo nor any of its affiliates makes any warranty, express or implied, including merchantability or fitness for use, or accepts any liability in connection with this product, related information or its use. Some applications of which Syensqo's products may be proposed to be used are regulated or restricted by applicable laws and regulations or by national or international standards and in some cases by Syensqo's recommendation, including applications of food/feed, water treatment, medical, pharmaceuticals, and personal care. Only products designated as part of the Solviva® family of biomaterials may be considered as candidates for use in implantable medical devices. The user alone must finally determine suitability of any information or products for any contemplated use in compliance with applicable law, the manner of use and whether any patents are infringed. The information and the products are for use by technically skilled persons at their own discretion and risk and does not relate to the use of this product in combination with any other substance or any other process. This is not a license under any patent or other proprietary right.

All trademarks and registered trademarks are property of the companies that comprise the Syensqo or their respective owners.

© 2024 2023 Syensqo. All rights reserved.

