

Radel® MS NT1 AM Filament

polyphenylsulfone

Radel® MS NT1 AM Filament offers the best of sulfone polymers, with a superiority in both toughness and impact strength, high temperature capabilities, as well as proven outperformance in chemical

resistance relative to both PSU and PEI. It enables applications in Aerospace, Healthcare, Smart Devices, and Energy Storage.

Material Status	 Commercial: Active 		
Availability	 Africa & Middle East Asia Pacific Europe	Latin AmericaNorth America	
Features	Acid ResistantBase ResistantChemical ResistantFlame Retardant	Good Impact ResistanceGood Thermal StabilityHigh Heat ResistanceUltra High Toughness	
Uses	 Additive Manufacturing (3D Printing) Aerospace Applications Energy Storage 	Medical/Healthcare ApplicationsSmart Devices	
RoHS Compliance	 Contact Manufacturer 		
Appearance	 Natural Color 		
Forms	• Filament		
Processing Method	3D Printing, Fused Filament Fabrication (FFF)		

Physical	Typical Value	Unit	Test method
Density / Specific Gravity	1.29		ASTM D792
Mechanical	Typical Value	Unit	Test method
Tensile Modulus	2000	MPa	ASTM D638
Tensile Strength			ASTM D638
Yield	62.0	MPa	
Break	42.0	MPa	
Tensile Elongation			ASTM D638
Yield	7.0	%	
Break	21	%	
Impact	Typical Value	Unit	Test method
Notched Izod Impact	480	J/m	ASTM D256
Thermal	Typical Value	Unit	Test method
Glass Transition Temperature	220	°C	DSC
Additional Information	Typical Value	Unit	
Diameter - Filament	1.75	mm	

Radel® MS NT1 AM Filament

polyphenylsulfone

Printing conditions for the above data table:

• Filament drying conditions, minimum 4h: 150°C

Extruder temperature: 380-410°C
Bed temperature: 180-220°C

· Printing tool path: cross hatching in the XY plane

Test specimen parameters:

First layer: 0.3mm thickSubsequent layers: 0.1mm

100% infill3 shells

• Printing speed: 18 mm/s

Notes

Typical properties: these are not to be construed as specifications.

www.syensqo.com

Safety Data Sheets (SDS) are available by emailing us or contacting your sales representative. Always consult the appropriate SDS before using any of our products.

Neither Syensqo nor any of its affiliates makes any warranty, express or implied, including merchantability or fitness for use, or accepts any liability in connection with this product, related information or its use. Some applications of which Syensqo's products may be proposed to be used are regulated or restricted by applicable laws and regulations or by national or international standards and in some cases by Syensqo's recommendation, including applications of food/feed, water treatment, medical, pharmaceuticals, and personal care. Only products designated as part of the Solviva® family of biomaterials may be considered as candidates for use in implantable medical devices. The user alone must finally determine suitability of any information or products for any contemplated use in compliance with applicable law, the manner of use and whether any patents are infringed. The information and the products are for use by technically skilled persons at their own discretion and risk and does not relate to the use of this product in combination with any other substance or any other process. This is not a license under any patent or other proprietary right.

All trademarks and registered trademarks are property of the companies that comprise the Syensqo or their respective owners.

© 2024 2023 Syensqo. All rights reserved.

